Inhaltsverzeichnis:
2025 Autor: John Day | [email protected]. Zuletzt bearbeitet: 2025-01-13 06:56
Der HDC1000 ist ein digitaler Feuchtigkeitssensor mit integriertem Temperatursensor, der eine hervorragende Messgenauigkeit bei sehr geringem Stromverbrauch bietet. Das Gerät misst die Luftfeuchtigkeit auf Basis eines neuartigen kapazitiven Sensors. Die Feuchtigkeits- und Temperatursensoren sind werkseitig kalibriert. Es ist im vollen Temperaturbereich von -40°C bis +125°C funktionsfähig.
In diesem Tutorial wurde die Schnittstelle des HDC1000-Sensormoduls mit arduino nano veranschaulicht. Zum Auslesen der Temperatur- und Luftfeuchtigkeitswerte haben wir arduino mit einem I2c-Adapter verwendet. Dieser I2C-Adapter macht die Verbindung zum Sensormodul einfach und zuverlässiger.
Schritt 1: Erforderliche Hardware:
Zu den Materialien, die wir zur Erreichung unseres Ziels benötigen, gehören die folgenden Hardwarekomponenten:
1. HDC1000
2. Arduino Nano
3. I2C-Kabel
4. I2C-Schild für Arduino Nano
Schritt 2: Hardwareanschluss:
Der Abschnitt zum Hardwareanschluss erläutert im Wesentlichen die erforderlichen Kabelverbindungen zwischen dem Sensor und dem arduino nano. Die Sicherstellung korrekter Verbindungen ist die Grundvoraussetzung bei der Arbeit an jedem System für die gewünschte Ausgabe. Die erforderlichen Verbindungen sind also wie folgt:
Der HDC1000 funktioniert über I2C. Hier ist das Beispiel-Verdrahtungsdiagramm, das zeigt, wie jede Schnittstelle des Sensors verdrahtet wird.
Out-of-the-box ist das Board für eine I2C-Schnittstelle konfiguriert, daher empfehlen wir, diesen Anschluss zu verwenden, wenn Sie ansonsten agnostisch sind.
Alles was Sie brauchen sind vier Drähte! Es werden nur vier Anschlüsse benötigt Vcc, Gnd, SCL und SDA Pins und diese werden mit Hilfe von I2C Kabel verbunden.
Diese Verbindungen sind in den obigen Bildern dargestellt.
Schritt 3: Code für Temperatur- und Feuchtigkeitsmessung:
Beginnen wir jetzt mit dem Arduino-Code.
Bei der Verwendung des Sensormoduls mit dem arduino binden wir die Wire.h-Bibliothek ein. Die Bibliothek "Wire" enthält die Funktionen, die die i2c-Kommunikation zwischen dem Sensor und dem Arduino-Board erleichtern.
Der gesamte Arduino-Code ist unten für den Benutzer angegeben:
#enthalten
// HDC1000 I2C-Adresse ist 0x40(64)
#define Addr 0x40
Void-Setup ()
{
// I2C-Kommunikation als MASTER initialisieren
Wire.begin();
// Serielle Kommunikation initialisieren, Baudrate = 9600. einstellen
Serial.begin (9600);
// Startet die I2C-Kommunikation
Wire.beginTransmission(Addr);
// Konfigurationsregister auswählen
Wire.write (0x02);
// Temperatur, Feuchtigkeit aktiviert, Auflösung = 14-Bit, Heizung an
Wire.write (0x30);
// I2C-Übertragung stoppen
Wire.endTransmission();
Verzögerung (300);
}
Leere Schleife ()
{
unsignierte int-Daten[2];
// Startet die I2C-Kommunikation
Wire.beginTransmission(Addr);
// Befehl zur Temperaturmessung senden
Wire.write (0x00);
// I2C-Übertragung stoppen
Wire.endTransmission();
Verzögerung (500);
// 2 Byte Daten anfordern
Wire.requestFrom(Addr, 2);
// 2 Byte Daten lesen
// temp msb, temp lsb
if (Draht.verfügbar() == 2)
{
data[0] = Wire.read();
data[1] = Wire.read();
}
// Konvertieren Sie die Daten
int temp = (data[0] * 256) + data[1];
Schwimmer cTemp = (temp / 65536,0) * 165,0 - 40;
Schwimmer fTemp = cTemp * 1,8 + 32;
// Startet die I2C-Kommunikation
Wire.beginTransmission(Addr);
// Befehl zur Feuchtemessung senden
Wire.write (0x01);
// I2C-Übertragung stoppen
Wire.endTransmission();
Verzögerung (500);
// 2 Byte Daten anfordern
Wire.requestFrom(Addr, 2);
// 2 Byte Daten lesen
// Feuchtigkeit msb, Feuchtigkeit lsb
if (Draht.verfügbar() == 2)
{
data[0] = Wire.read();
data[1] = Wire.read();
}
// Konvertieren Sie die Daten
Schwebefeuchtigkeit = (data[0] * 256) + data[1];
Feuchtigkeit = (Luftfeuchtigkeit / 65536,0) * 100,0;
// Daten an seriellen Monitor ausgeben
Serial.print ("Relative Luftfeuchtigkeit:");
Serial.print (Luftfeuchtigkeit);
Serial.println("%RH");
Serial.print ("Temperatur in Celsius:");
Serial.print (cTemp);
Serial.println("C");
Serial.print ("Temperatur in Fahrenheit:");
Serial.print (fTemp);
Serial.println("F");
Verzögerung (500);
}
In der Drahtbibliothek werden Wire.write() und Wire.read() verwendet, um die Befehle zu schreiben und den Sensorausgang zu lesen.
Serial.print () und Serial.println () wird verwendet, um die Ausgabe des Sensors auf dem seriellen Monitor der Arduino IDE anzuzeigen.
Die Ausgabe des Sensors ist im Bild oben dargestellt.
Schritt 4: Anwendungen:
HDC1000 kann in Heizungs-, Lüftungs- und Klimaanlagen (HLK), intelligenten Thermostaten und Raummonitoren eingesetzt werden. Dieser Sensor findet auch seine Anwendung in Druckern, Handmessgeräten, medizinischen Geräten, Frachtschiffen sowie Auto-Windschutzscheibenbeschlag.