Inhaltsverzeichnis:
- Schritt 1: BMG160 Übersicht:
- Schritt 2: Was Sie brauchen.
- Schritt 3: Hardwareanschluss:
- Schritt 4: 3-Achsen-Gyroskop-Messung Partikelcode:
- Schritt 5: Anwendungen:
Video: Anbindung des 3-Achsen-Gyroskopsensors BMG160 mit Partikel - Gunook
2024 Autor: John Day | [email protected]. Zuletzt bearbeitet: 2024-01-30 07:18
In der heutigen Welt sind mehr als die Hälfte der Jugendlichen und Kinder spielbegeistert und alle, die es mögen, wissen, fasziniert von den technischen Aspekten des Spiels, um die Bedeutung von Motion Sensing in diesem Bereich. Dasselbe hat uns auch erstaunt und nur um es auf die Bretter zu bringen, haben wir uns überlegt, an einem Gyroskopsensor zu arbeiten, der die Winkelgeschwindigkeit jedes Objekts messen kann. Der Sensor, den wir zur Bewältigung der Aufgabe genommen haben, ist also BMG160. BMG160 ist ein digitaler 16-Bit-Triaxial-Gyroskopsensor, der die Winkelgeschwindigkeit in drei senkrechten Raumdimensionen messen kann.
In diesem Tutorial werden wir die Arbeit des BMG160 mit Particle Photon demonstrieren.
Folgende Hardware wird hierfür benötigt:
1. BMG160
2. Teilchenphoton
3. I2C-Kabel
4. I2C-Schild für Partikelphotonen
Schritt 1: BMG160 Übersicht:
Zunächst möchten wir Sie mit den grundlegenden Funktionen des Sensormoduls BMG160 und dem Kommunikationsprotokoll, auf dem es arbeitet, vertraut machen.
BMG160 ist im Grunde ein digitaler, dreiachsiger 16-Bit-Gyroskopsensor, der Winkelgeschwindigkeiten messen kann. Es ist in der Lage, Winkelgeschwindigkeiten in drei senkrechten Raumdimensionen, der x-, y- und z-Achse, zu berechnen und die entsprechenden Ausgangssignale bereitzustellen. Es kann mit dem Raspberry Pi Board über das I2C-Kommunikationsprotokoll kommunizieren. Dieses spezielle Modul wurde entwickelt, um Anforderungen für Verbraucheranwendungen sowie für industrielle Zwecke zu erfüllen.
Das Kommunikationsprotokoll, auf dem der Sensor arbeitet, ist I2C. I2C steht für den interintegrierten Schaltkreis. Es ist ein Kommunikationsprotokoll, bei dem die Kommunikation über SDA-(serial data)- und SCL-(serial clock)-Leitungen erfolgt. Es ermöglicht den gleichzeitigen Anschluss mehrerer Geräte. Es ist eines der einfachsten und effizientesten Kommunikationsprotokolle.
Schritt 2: Was Sie brauchen.
Zu den Materialien, die wir zur Erreichung unseres Ziels benötigen, gehören die folgenden Hardwarekomponenten:
1. BMG160
2. Teilchenphoton
3. I2C-Kabel
4. I2C-Schild für Partikelphotonen
Schritt 3: Hardwareanschluss:
Der Abschnitt Hardware-Anschlüsse erklärt im Wesentlichen die erforderlichen Kabelverbindungen zwischen dem Sensor und dem Partikel. Die Sicherstellung korrekter Verbindungen ist die Grundvoraussetzung bei der Arbeit an jedem System für die gewünschte Ausgabe. Die erforderlichen Verbindungen sind also wie folgt:
Das BMG160 wird über I2C arbeiten. Hier ist das Beispiel-Verdrahtungsdiagramm, das zeigt, wie jede Schnittstelle des Sensors verdrahtet wird.
Out-of-the-box ist das Board für eine I2C-Schnittstelle konfiguriert, daher empfehlen wir, diesen Anschluss zu verwenden, wenn Sie ansonsten agnostisch sind.
Alles was Sie brauchen sind vier Drähte! Es werden nur vier Anschlüsse benötigt Vcc, Gnd, SCL und SDA Pins und diese werden mit Hilfe von I2C Kabel verbunden.
Diese Verbindungen sind in den obigen Bildern dargestellt.
Schritt 4: 3-Achsen-Gyroskop-Messung Partikelcode:
Beginnen wir jetzt mit dem Partikelcode.
Bei der Verwendung des Sensormoduls mit dem arduino binden wir die Bibliothek application.h und spark_wiring_i2c.h ein. Die Bibliothek "application.h" und spark_wiring_i2c.h enthält die Funktionen, die die i2c-Kommunikation zwischen Sensor und Partikel ermöglichen.
Der gesamte Partikelcode ist unten für die Benutzerfreundlichkeit angegeben:
#enthalten
#enthalten
// BMG160 I2C-Adresse ist 0x68(104)
#define Addr 0x68
int xGyro = 0, yGyro = 0, zGyro = 0;
Void-Setup ()
{
// Variable setzen
Partikel.variable("i2cdevice", "BMG160");
Partikel.variable("xGyro", xGyro);
Partikel.variable("yGyro", yGyro);
Partikel.variable("zGyro", zGyro);
// I2C-Kommunikation als MASTER initialisieren
Wire.begin();
// Serielle Kommunikation initialisieren
Serial.begin (9600);
// I2C-Übertragung starten
Wire.beginTransmission(Addr);
// Bereichsregister auswählen
Wire.write (0x0F);
// Vollausschlag 2000 dps konfigurieren
Wire.write (0x80);
// I2C-Übertragung stoppen
Wire.endTransmission();
// I2C-Übertragung starten
Wire.beginTransmission(Addr);
// Bandbreitenregister auswählen
Wire.write(0x10);
// Bandbreite = 200 Hz einstellen
Wire.write (0x04);
// I2C-Übertragung stoppen
Wire.endTransmission();
Verzögerung (300);
}
Leere Schleife ()
{
unsignierte int-Daten[6];
// I2C-Übertragung starten
Wire.beginTransmission(Addr);
// Datenregister auswählen
Wire.write (0x02);
// I2C-Übertragung stoppen
Wire.endTransmission();
// 6 Byte Daten anfordern
Wire.requestFrom(Addr, 6);
// 6 Byte Daten lesen
// xGyro lsb, xGyro msb, yGyro lsb, yGyro msb, zGyro lsb, zGyro msb
if(Draht.verfügbar() == 6)
{
data[0] = Wire.read();
data[1] = Wire.read();
data[2] = Wire.read();
Daten[3] = Wire.read();
data[4] = Wire.read();
data[5] = Wire.read();
}
Verzögerung (300);
// Konvertieren Sie die Daten
xGyro = ((Daten[1] * 256) + Daten[0]);
if (xGyro > 32767)
{
xGyro -= 65536;
}
yGyro = ((Daten[3] * 256) + Daten[2]);
if (yGyro > 32767)
{
yGyro -= 65536;
}
zGyro = ((Daten[5] * 256) + Daten[4]);
if (zGyro > 32767)
{
zGyro -= 65536;
}
// Daten an Dashboard ausgeben
Particle.publish("X-Rotationsachse:", String(xGyro));
Particle.publish("Y-Rotationsachse:", String(yGyro));
Particle.publish("Z-Rotationsachse:", String(zGyro));
Verzögerung (1000);
}
Schritt 5: Anwendungen:
BMG160 hat eine Vielzahl von Anwendungen in Geräten wie Mobiltelefonen und Mensch-Maschine-Schnittstellengeräten. Dieses Sensormodul wurde entwickelt, um die Anforderungen für Verbraucheranwendungen wie Bildstabilisierung (DSC und Kamera-Handy), Spiele und Zeigegeräte zu erfüllen. Es wird auch in Systemen verwendet, die eine Gestenerkennung erfordern, und in den Systemen, die in der Indoor-Navigation verwendet werden.
Empfohlen:
Wie man eine Babygewichtsmaschine mit Arduino Nano, HX-711 Wägezelle und OLED 128X64 herstellt -- Kalibrierung des HX-711: 5 Schritte
Wie man eine Babygewichtsmaschine mit Arduino Nano, HX-711-Wägezelle und OLED 128X64 herstellt || Kalibrierung von HX-711: Hallo Instructables, vor wenigen Tagen wurde ich Vater eines süßen Babys?. Als ich im Krankenhaus war, stellte ich fest, dass das Gewicht des Babys so wichtig ist, um das Wachstum des Babys zu überwachen. Also ich habe eine Idee? um eine Babygewichtsmaschine von meinem Selbst zu machen. In diesem Instructable ich
Eine Modifikation des linkshändigen DSLR-Halters von Bertus52x11. (mit zusätzlichem Mundgriff): 4 Schritte
Eine Modifikation des linkshändigen DSLR-Halters von Bertus52x11. (mit Added Mouth Grip): Also heute früher hat bertus52x11 die klügste Idee gepostet. Richtet sich an Menschen, die nur ihren linken Arm benutzen können - dauerhaft oder vorübergehend. Seine ursprüngliche Idee war es, am Stativanschluss darunter einen Daumenhaken anzubringen, mit dem die Kamera gehalten werden kann
Programmierung des Open DSKY: 5 Schritte (mit Bildern)
Programmierung des Open DSKY: Willkommen zu unseren laufenden Instructables zur Programmierung Ihres Open DSKY. Stellen Sie sicher, dass Sie wiederkommen, da dieses Instructable weiter wachsen wird, da wir ständig neues Programmiermaterial produzieren und veröffentlichen. Also folgen Sie ihm, mögen Sie es und bevorzugen Sie es. Diese Videoserie
Gewusst wie: Geschwindigkeit des Motors steuern?: 5 Schritte (mit Bildern)
Gewusst wie: Geschwindigkeit des Motors steuern?: Wenn Sie ein paar DC-Motoren herumliegen haben, kommt Ihnen die erste Frage in den Sinn, wie ich die Geschwindigkeit dieser Motoren kontrolliere! Also in diesem Instructables werde ich zeigen, wie einfach es ist! Sie fühlen sich faul, Sie können Videos auf meinem Kanal ansehen Auch Huge Tha
Vollständige Anleitung zur Verwendung des Bodenfeuchtesensors mit praktischem Beispiel: 7 Schritte
Vollständige Anleitung zur Verwendung des Bodenfeuchtigkeitssensors mit praktischem Beispiel: Sie können dieses und andere erstaunliche Tutorials auf der offiziellen Website von ElectroPeak lesen.ÜbersichtIn diesem Tutorial erfahren Sie, wie Sie einen Bodenfeuchtigkeitssensor verwenden. Es werden auch praktische Beispiele bereitgestellt, die Ihnen helfen, den Code zu beherrschen. Was Sie lernen werden: Wie Boden