Inhaltsverzeichnis:

Arduino Nano - TMP100 Temperatursensor Tutorial - Gunook
Arduino Nano - TMP100 Temperatursensor Tutorial - Gunook

Video: Arduino Nano - TMP100 Temperatursensor Tutorial - Gunook

Video: Arduino Nano - TMP100 Temperatursensor Tutorial - Gunook
Video: Arduino Nano - TMP100 Temperature Sensor Tutorial 2024, November
Anonim
Image
Image

TMP100 Hochgenauer, stromsparender, digitaler Temperatursensor I2C MINI-Modul. Der TMP100 ist ideal für die erweiterte Temperaturmessung. Dieses Gerät bietet eine Genauigkeit von ±1 °C, ohne dass eine Kalibrierung oder externe Signalaufbereitung von Komponenten erforderlich ist. Hier ist die Demonstration mit Arduino Nano.

Schritt 1: Was Sie brauchen.

Was du brauchst..!!
Was du brauchst..!!

1. Arduino Nano

2. TMP100

3. I²C-Kabel

4. I²C-Schild für Arduino Nano

Schritt 2: Verbindung:

Verbindung
Verbindung
Verbindung
Verbindung
Verbindung
Verbindung
Verbindung
Verbindung

Nehmen Sie ein I2C-Shield für Arduino Nano und schieben Sie es vorsichtig über die Pins von Nano.

Verbinden Sie dann das eine Ende des I2C-Kabels mit dem TMP100-Sensor und das andere Ende mit der I2C-Abschirmung.

Die Anschlüsse sind im Bild oben dargestellt.

Schritt 3: Code:

Code
Code

Der Arduino-Code für TMP100 kann von unserem GitHub-Repository-Dcube Store heruntergeladen werden

Hier der Link dazu:

github.com/DcubeTechVentures/TMP100..

Wir binden die Bibliothek Wire.h ein, um die I2c-Kommunikation des Sensors mit dem Arduino-Board zu erleichtern.

Sie können den Code auch von hier kopieren, er wird wie folgt angegeben:

// Wird mit einer frei wählbaren Lizenz vertrieben.

// Verwenden Sie es, wie Sie wollen, gewinnbringend oder kostenlos, sofern es in die Lizenzen der zugehörigen Werke passt.

// TMP100

// Dieser Code wurde entwickelt, um mit dem TMP100_I2CS I2C Mini-Modul zu arbeiten, das im Dcube Store erhältlich ist.

#enthalten

// TMP100 I2C-Adresse ist 0x4F(79)

#define Addr 0x4F

Void-Setup ()

{

// I2C-Kommunikation als MASTER initialisieren

Wire.begin();

// Serielle Kommunikation initialisieren, Baudrate = 9600. einstellen

Serial.begin (9600);

// I2C-Übertragung starten

Wire.beginTransmission(Addr);

// Konfigurationsregister auswählen

Wire.write (0x01);

// Kontinuierliche Konvertierung, Komparatormodus, 12-Bit-Auflösung einstellen

Wire.write (0x60);

// I2C-Übertragung stoppen

Wire.endTransmission();

Verzögerung (300);

}

Leere Schleife ()

{

unsignierte int-Daten[2];

// I2C-Übertragung starten

Wire.beginTransmission(Addr);

// Datenregister auswählen

Wire.write (0x00);

// I2C-Übertragung stoppen

Wire.endTransmission();

// 2 Byte Daten anfordern

Wire.requestFrom(Addr, 2);

// 2 Byte Daten lesen

// cTemp msb, cTemp lsb

if(Draht.verfügbar() == 2)

{

data[0] = Wire.read();

data[1] = Wire.read();

}

// Konvertieren Sie die Daten

float cTemp = (((data[0] * 256) + (data[1] & 0xF0)) / 16) * 0,0625;

Schwimmer fTemp = cTemp * 1,8 + 32;

// Daten an seriellen Monitor ausgeben

Serial.print ("Temperatur in Celsius: ");

Serial.print (cTemp);

Serial.println("C");

Serial.print ("Temperatur in Fahrenheit: ");

Serial.print (fTemp);

Serial.println("F");

Verzögerung (500);

}

Schritt 4: Anwendungen:

Zu den verschiedenen Anwendungen, die den digitalen Temperatursensor TMP100 mit geringem Stromverbrauch und hoher Genauigkeit verwenden, gehören die Überwachung der Stromversorgungstemperatur, der Wärmeschutz der Computerperipherie, das Batteriemanagement sowie Büromaschinen.

Empfohlen: