Inhaltsverzeichnis:
2025 Autor: John Day | [email protected]. Zuletzt bearbeitet: 2025-01-13 06:56
Der HDC1000 ist ein digitaler Feuchtigkeitssensor mit integriertem Temperatursensor, der eine hervorragende Messgenauigkeit bei sehr geringem Stromverbrauch bietet. Das Gerät misst die Luftfeuchtigkeit auf Basis eines neuartigen kapazitiven Sensors. Die Feuchtigkeits- und Temperatursensoren sind werkseitig kalibriert. Es ist im vollen Temperaturbereich von -40°C bis +125°C funktionsfähig.
In diesem Tutorial wurde die Anbindung des HDC1000 Sensormoduls an Partikelphotonen veranschaulicht. Zum Auslesen der Temperatur- und Luftfeuchtigkeitswerte haben wir Partikel mit einem I2C-Adapter verwendet. Dieser I2C-Adapter macht die Verbindung zum Sensormodul einfach und zuverlässiger.
Schritt 1: Erforderliche Hardware:
Zu den Materialien, die wir zur Erreichung unseres Ziels benötigen, gehören die folgenden Hardwarekomponenten:
1. HDC1000
2. Teilchenphoton
3. I2C-Kabel
4. I2C-Schild für Teilchenphotonen
Schritt 2: Hardwareanschluss:
Der Abschnitt Hardware-Anschlüsse erklärt im Wesentlichen die erforderlichen Kabelverbindungen zwischen dem Sensor und dem Partikelphoton. Die Sicherstellung korrekter Verbindungen ist die Grundvoraussetzung bei der Arbeit an jedem System für die gewünschte Ausgabe. Die erforderlichen Verbindungen sind also wie folgt:
Der HDC1000 funktioniert über I2C. Hier ist das Beispiel-Verdrahtungsdiagramm, das zeigt, wie jede Schnittstelle des Sensors verdrahtet wird.
Out-of-the-box ist das Board für eine I2C-Schnittstelle konfiguriert, daher empfehlen wir, diesen Anschluss zu verwenden, wenn Sie ansonsten agnostisch sind.
Alles was Sie brauchen sind vier Drähte! Es werden nur vier Anschlüsse benötigt Vcc, Gnd, SCL und SDA Pins und diese werden mit Hilfe von I2C Kabel verbunden.
Diese Verbindungen sind in den obigen Bildern dargestellt.
Schritt 3: Code für Temperatur- und Feuchtigkeitsmessung:
Beginnen wir jetzt mit dem Partikelcode.
Bei der Verwendung des Sensormoduls mit dem Partikel binden wir die Bibliothek application.h und spark_wiring_i2c.h ein. Die Bibliothek "application.h" und spark_wiring_i2c.h enthält die Funktionen, die die i2c-Kommunikation zwischen Sensor und Partikel ermöglichen.
Der gesamte Partikelcode ist unten für die Benutzerfreundlichkeit angegeben:
#enthalten
#enthalten
// HDC1000 I2C-Adresse ist 0x40(64)
#define Addr 0x40
doppelt cTemp = 0.0, fTemp = 0.0, Feuchtigkeit = 0.0;
int temp = 0, brumm = 0;
Void-Setup ()
{
// Variable setzen
Partikel.variable("i2cdevice", "HDC1000");
Particle.variable("Feuchtigkeit", Feuchtigkeit);
Partikel.variable("cTemp", cTemp);
// I2C-Kommunikation initialisieren
Wire.begin();
// Serielle Kommunikation initialisieren, Baudrate = 9600. einstellen
Serial.begin (9600);
// I2C-Übertragung starten
Wire.beginTransmission(Addr);
// Konfigurationsregister auswählen
Wire.write (0x02);
// Temperatur, Feuchtigkeit aktiviert, Auflösung = 14-Bit, Heizung an
Wire.write (0x30);
// I2C-Übertragung stoppen
Wire.endTransmission();
Verzögerung (300);
}
Leere Schleife ()
{
unsignierte int-Daten[2];
// I2C-Übertragung starten
Wire.beginTransmission(Addr);
// Befehl zur Temperaturmessung senden
Wire.write (0x00);
// I2C-Übertragung stoppen
Wire.endTransmission();
Verzögerung (500);
// 2 Byte Daten anfordern
Wire.requestFrom(Addr, 2);
// 2 Byte Daten lesen
// temp msb, temp lsb
if (Draht.verfügbar() == 2)
{
data[0] = Wire.read();
data[1] = Wire.read();
}
// Konvertieren Sie die Daten
temp = ((data[0] * 256) + data[1]);
cTemp = (Temp / 65536,0) * 165,0 - 40;
fTemp = cTemp * 1,8 + 32;
// I2C-Übertragung starten
Wire.beginTransmission(Addr);
// Befehl zur Feuchtemessung senden
Wire.write (0x01);
// I2C-Übertragung stoppen
Wire.endTransmission();
Verzögerung (500);
// 2 Byte Daten anfordern
Wire.requestFrom(Addr, 2);
// 2 Byte Daten lesen
// temp msb, temp lsb
if (Draht.verfügbar() == 2)
{
data[0] = Wire.read();
data[1] = Wire.read();
}
// Konvertieren Sie die Daten
summen = ((data[0] * 256) + data[1]);
Feuchtigkeit = (hum / 65536,0) * 100,0;
// Daten an Dashboard ausgeben
Particle.publish("Relative Luftfeuchtigkeit: ", String(Luftfeuchtigkeit));
Verzögerung (1000);
Particle.publish("Temperatur in Celsius: ", String(cTemp));
Verzögerung (1000);
Particle.publish("Temperatur in Fahrenheit: ", String(fTemp));
Verzögerung (1000);
}
Die Funktion Particle.variable() erstellt die Variablen zum Speichern der Ausgabe des Sensors und die Funktion Particle.publish() zeigt die Ausgabe auf dem Dashboard der Site an.
Der Sensorausgang ist im obigen Bild zu Ihrer Referenz dargestellt.
Schritt 4: Anwendungen:
HDC1000 kann in Heizungs-, Lüftungs- und Klimaanlagen (HLK), intelligenten Thermostaten und Raummonitoren eingesetzt werden. Dieser Sensor findet auch seine Anwendung in Druckern, Handmessgeräten, medizinischen Geräten, Frachtschiffen sowie Auto-Windschutzscheibenbeschlag.