Inhaltsverzeichnis:

Feuchtigkeits- und Temperaturmessung mit HIH6130 und Raspberry Pi - Gunook
Feuchtigkeits- und Temperaturmessung mit HIH6130 und Raspberry Pi - Gunook
Anonim
Image
Image

HIH6130 ist ein Feuchtigkeits- und Temperatursensor mit digitalem Ausgang. Diese Sensoren bieten eine Genauigkeit von ±4 % RH. Mit branchenführender Langzeitstabilität, echtem temperaturkompensiertem digitalem I2C, branchenführender Zuverlässigkeit, Energieeffizienz und ultrakleinen Gehäusegrößen und Optionen.

In diesem Tutorial wird die Anbindung des HIH6130 Sensormoduls an Raspberry Pi demonstriert und auch die Programmierung mit Java veranschaulicht. Zum Auslesen der Temperatur- und Luftfeuchtigkeitswerte haben wir Raspberry Pi mit einem I2C-Adapter verwendet. Dieser I2C-Adapter macht die Verbindung zum Sensormodul einfach und zuverlässiger.

Schritt 1: Erforderliche Hardware:

Erforderliche Hardware
Erforderliche Hardware
Erforderliche Hardware
Erforderliche Hardware
Erforderliche Hardware
Erforderliche Hardware

Zu den Materialien, die wir zur Erreichung unseres Ziels benötigen, gehören die folgenden Hardwarekomponenten:

1. HIH6130

2. Himbeer-Pi

3. I2C-Kabel

4. I2C-Schild für Himbeer-Pi

5. Ethernet-Kabel

Schritt 2: Hardwareanschluss:

Hardware-Anschluss
Hardware-Anschluss
Hardware-Anschluss
Hardware-Anschluss

Der Abschnitt zum Hardwareanschluss erklärt im Wesentlichen die erforderlichen Kabelverbindungen zwischen dem Sensor und dem Himbeer-Pi. Die Sicherstellung korrekter Verbindungen ist die Grundvoraussetzung bei der Arbeit an jedem System für die gewünschte Ausgabe. Die erforderlichen Verbindungen sind also wie folgt:

Der HIH6130 funktioniert über I2C. Hier ist das Beispiel-Verdrahtungsdiagramm, das zeigt, wie jede Schnittstelle des Sensors verdrahtet wird.

Out-of-the-box ist das Board für eine I2C-Schnittstelle konfiguriert, daher empfehlen wir, diesen Anschluss zu verwenden, wenn Sie ansonsten agnostisch sind.

Alles was Sie brauchen sind vier Drähte! Es werden nur vier Anschlüsse benötigt Vcc, Gnd, SCL und SDA Pins und diese werden mit Hilfe von I2C Kabel verbunden.

Diese Verbindungen sind in den obigen Bildern dargestellt.

Schritt 3: Code für Feuchte- und Temperaturmessung:

Code für Feuchte- und Temperaturmessung
Code für Feuchte- und Temperaturmessung

Der Vorteil der Verwendung von Raspberry Pi ist, dass Sie die Flexibilität der Programmiersprache haben, in der Sie das Board programmieren möchten, um den Sensor damit zu verbinden. Diesen Vorteil dieses Boards nutzend, demonstrieren wir hier seine Programmierung in Java. Der Java-Code für HIH6130 kann von unserer GitHub-Community Dcube Store heruntergeladen werden.

Neben der Benutzerfreundlichkeit erklären wir den Code auch hier:

Als ersten Schritt der Codierung müssen Sie im Fall von Java die pi4j-Bibliothek herunterladen, da diese Bibliothek die im Code verwendeten Funktionen unterstützt. Um die Bibliothek herunterzuladen, können Sie den folgenden Link besuchen:

pi4j.com/install.html

Sie können den funktionierenden Java-Code für diesen Sensor auch von hier kopieren:

com.pi4j.io.i2c. I2CBus importieren;

com.pi4j.io.i2c. I2CDevice importieren;

com.pi4j.io.i2c. I2CFactory importieren;

import java.io. IOException;

öffentliche Klasse HIH6130

{

public static void main(String args) löst Ausnahme aus

{

// I2C-Bus erstellen

I2CBus-Bus = I2CFactory.getInstance(I2CBus. BUS_1);

// I2C-Gerät abrufen, HIH6130 I2C-Adresse ist 0x27(39)

I2CDevice-Gerät = Bus.getDevice(0x27);

Thread.sleep(500);

// 4 Byte Daten lesen

// Luftfeuchtigkeit msb, Luftfeuchtigkeit lsb, temp msb, temp lsb

Byte Daten = neues Byte[4];

device.read (0x00, Daten, 0, 4);

// Konvertieren Sie die Daten in 14-Bit

doppelte Feuchtigkeit = (((data[0] & 0x3F) * 256) + (data[1] & 0xFF)) / 16384.0 * 100.0;

int temp = (((((Daten[2] & 0xFF) * 256) + (Daten[3] & 0xFC)) / 4);

doppelte cTemp = (temp / 16384,0) * 165,0 - 40,0;

doppeltes fTemp = cTemp * 1,8 + 32;

// Daten auf Bildschirm ausgeben

System.out.printf("Relative Luftfeuchtigkeit: %.2f %% RH %n", Luftfeuchtigkeit);

System.out.printf("Temperatur in Celsius: %.2f C %n", cTemp);

System.out.printf("Temperatur in Fahrenheit: %.2f F %n", fTemp);

}

}

Die Bibliothek, die die i2c-Kommunikation zwischen Sensor und Board ermöglicht, ist pi4j, seine verschiedenen Pakete I2CBus, I2CDevice und I2CFactory helfen beim Verbindungsaufbau.

com.pi4j.io.i2c. I2CBus importieren; com.pi4j.io.i2c. I2CDevice importieren; com.pi4j.io.i2c. I2CFactory importieren; import java.io. IOException;

Die Funktionen write() und read() werden verwendet, um bestimmte Befehle an den Sensor zu schreiben, damit er in einem bestimmten Modus funktioniert und die Sensorausgabe entsprechend gelesen wird.

Die Ausgabe des Sensors wird auch im Bild oben gezeigt.

Schritt 4: Anwendungen:

Anwendungen
Anwendungen

HIH6130 kann zur präzisen Messung der relativen Luftfeuchtigkeit und Temperatur in Klimaanlagen, Enthalpiemessung, Thermostaten, Befeuchtern/Entfeuchtern und Hygrostaten verwendet werden, um den Komfort der Bewohner zu gewährleisten. Es kann auch in Luftkompressoren, Wetterstationen und Telekommunikationsschränken eingesetzt werden.

Empfohlen: