Temperaturmessung mit ADT75 und Particle Photon - Gunook
Temperaturmessung mit ADT75 und Particle Photon - Gunook
Anonim
Image
Image

ADT75 ist ein hochpräziser, digitaler Temperatursensor. Es besteht aus einem Bandgap-Temperatursensor und einem 12-Bit-Analog-Digital-Wandler zur Überwachung und Digitalisierung der Temperatur. Sein hochempfindlicher Sensor macht ihn kompetent genug, um die Umgebungstemperatur genau zu messen.

In diesem Tutorial wurde die Anbindung des ADT75 Sensormoduls an Partikelphotonen veranschaulicht. Zum Auslesen der Temperaturwerte haben wir arduino mit einem I2c-Adapter verwendet. Dieser I2C-Adapter macht die Verbindung zum Sensormodul einfach und zuverlässiger.

Schritt 1: Erforderliche Hardware:

Erforderliche Hardware
Erforderliche Hardware
Erforderliche Hardware
Erforderliche Hardware
Erforderliche Hardware
Erforderliche Hardware

Zu den Materialien, die wir zur Erreichung unseres Ziels benötigen, gehören die folgenden Hardwarekomponenten:

1. ADT75

2. Teilchenphoton

3. I2C-Kabel

4. I2C-Schild für Teilchenphotonen

Schritt 2: Hardwareanschluss:

Hardware-Anschluss
Hardware-Anschluss
Hardware-Anschluss
Hardware-Anschluss

Der Abschnitt Hardware-Anschlüsse erklärt im Wesentlichen die erforderlichen Kabelverbindungen zwischen dem Sensor und dem Partikelphoton. Die Sicherstellung korrekter Verbindungen ist die Grundvoraussetzung bei der Arbeit an jedem System für die gewünschte Ausgabe. Die erforderlichen Verbindungen sind also wie folgt:

Der ADT75 funktioniert über I2C. Hier ist das Beispiel-Verdrahtungsdiagramm, das zeigt, wie jede Schnittstelle des Sensors verdrahtet wird.

Out-of-the-box ist das Board für eine I2C-Schnittstelle konfiguriert, daher empfehlen wir, diesen Anschluss zu verwenden, wenn Sie ansonsten agnostisch sind.

Alles was Sie brauchen sind vier Drähte! Es werden nur vier Anschlüsse benötigt Vcc, Gnd, SCL und SDA Pins und diese werden mit Hilfe von I2C Kabel verbunden.

Diese Verbindungen sind in den obigen Bildern dargestellt.

Schritt 3: Code für die Temperaturmessung:

Code für die Temperaturmessung
Code für die Temperaturmessung

Beginnen wir jetzt mit dem Partikelcode.

Bei der Verwendung des Sensormoduls mit dem arduino binden wir die Bibliothek application.h und spark_wiring_i2c.h ein. Die Bibliothek "application.h" und spark_wiring_i2c.h enthält die Funktionen, die die i2c-Kommunikation zwischen Sensor und Partikel ermöglichen.

Der gesamte Partikelcode ist unten für die Benutzerfreundlichkeit angegeben:

#enthalten

#enthalten

// ADT75 I2C-Adresse ist 0x48(72)

#define Addr 0x48

Schwimmer cTemp = 0.0, fTemp = 0.0;

int-Temp = 0;

Void-Setup ()

{

// Variable setzen

Partikel.variable("i2cdevice", "ADT75");

Partikel.variable("cTemp", cTemp);

// I2C-Kommunikation als Master initialisieren

Wire.begin();

// Serielle Kommunikation initialisieren, Baudrate = 9600. einstellen

Serial.begin (9600);

Verzögerung (300);

}

Leere Schleife ()

{

unsignierte int-Daten[2];

// I2C-Übertragung starten

Wire.beginTransmission(Addr);

// Datenregister auswählen

Wire.write (0x00);

// I2C-Übertragung stoppen

Wire.endTransmission();

// 2 Byte Daten anfordern

Wire.requestFrom(Addr, 2);

// 2 Byte Daten lesen

// temp msb, temp lsb

if (Draht.verfügbar() == 2)

{

data[0] = Wire.read();

data[1] = Wire.read();

}

// Konvertieren Sie die Daten in 12 Bit

temp = ((data[0] * 256) + data[1]) / 16;

wenn (temp > 2047)

{

Temperatur -= 4096;

}

cTemp = Temperatur * 0,0625;

fTemp = (cTemp * 1,8) + 32;

// Daten an Dashboard ausgeben

Particle.publish("Temperatur in Celsius: ", String(cTemp));

Particle.publish("Temperatur in Fahrenheit: ", String(fTemp));

Verzögerung (1000);

}

Die Funktion Particle.variable() erstellt die Variablen zum Speichern der Ausgabe des Sensors und die Funktion Particle.publish() zeigt die Ausgabe auf dem Dashboard der Site an.

Der Sensorausgang ist im obigen Bild zu Ihrer Referenz dargestellt.

Schritt 4: Anwendungen:

Anwendungen
Anwendungen

ADT75 ist ein hochpräziser, digitaler Temperatursensor. Es kann in einer Vielzahl von Systemen eingesetzt werden, einschließlich Umgebungskontrollsystemen, Computer-Wärmeüberwachung usw. Es kann auch in industrielle Prozesssteuerungen sowie in Netzüberwachungen integriert werden.

Empfohlen: